Using a Mahalanobis-Like Distance to Train Radial Basis Neural Networks
نویسندگان
چکیده
Radial Basis Neural Networks (RBNN) can approximate any regular function and have a faster training phase than other similar neural networks. However, the activation of each neuron depends on the euclidean distance between a pattern and the neuron center. Therefore, the activation function is symmetrical and all attributes are considered equally relevant. This could be solved by altering the metric used in the activation function (i.e. using non-symmetrical metrics). The Mahalanobis distance is such a metric, that takes into account the variability of the attributes and their correlations. However, this distance is computed directly from the variance-covariance matrix and does not consider the accuracy of the learning algorithm. In this paper, we propose to use a generalized euclidean metric, following the Mahalanobis structure, but evolved by a Genetic Algorithm (GA). This GA searches for the distance matrix that minimizes the error produced by a fixed RBNN. Our approach has been tested on two domains and positive results have been observed in both cases.
منابع مشابه
Predicting the buckling Capacity of Steel Cylindrical Shells with Rectangular Stringers under Axial Loading by using Artificial Neural Networks
A parametric study was carried out in order to investigate the buckling capacity of the vertically stiffened cylindrical shells. To this end ANSYS software was used. Cylindrical steel shells with different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and their buckling capacities were calculated by displacement control nonlinear static analysis. Radi...
متن کاملNew RBF neural network classifier with optimized hidden neurons number
This article presents a noticeable performances improvement of a neural classifier based on an RBF network. Based on the Mahalanobis distance, this new classifier increases relatively the recognition rate while decreasing remarkably the number of hidden layer neurons. We obtain thus a new very general RBF classifier, very simple, not requiring any adjustment parameter, and presenting an excelle...
متن کاملDetermination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models
In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...
متن کاملSEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS
The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the va...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005